Conjugate Newton's Method for a Polynomial of degree m+1
Journal Article

The main problem of this paper is to conjugate the cubic equation to quadratic

equation by using Mӧbius transformation, so the work to finding the roots of

polynomials with Complex variable and double roots using Newton’s method will

be easier. Also we make some correction to the linear fractional transformation (or

Mobius transformation)

omar Ismail omar elhasadi, Mohammed Saleh Alsayd, Elhadi A. A. Maree, (01-2022), جامعة المرقب: مجلة التربوي, 20 569-584

Exact Solution of Linear Volterra integro-differential Equation of First Kind Using Abaoub-Shkheam Transform
Journal Article

Abstract: We employ Abaoub - Shkheam transformation to solve linear Volterra integro-differential equation of the first kind, we considered the kernel of that equation is a deference type kernel. Moreover, we prove the existence and uniqueness of solutions of the equation under some conditions in the Banach space and fixed-point theory. Finally, some examples are included to demonstrate the validity and applicability of the proposed technique. 

Abejela S. Shkheam, Ali E. Abaoub, Yousuf A. Huwaydi, (11-2021), الهند: IJRIAS, 6 (11), 60-64

2) Exact solutions for the GKdV–mKdV equation with higher-order nonlinear terms using the generalized (G'/G,1/G) -expansion method and the generalized Liénard equation.
Journal Article

In this article, we propose a new method to construct many new exact solutions with

parameters for the generalized KdV–mKdV (GKdV–mKdV) equation with higher-

order nonlinear terms. The proposed method is a generalization of the well-known( G′

G , 1

G

)

-expansion method in the case of the hyperbolic function solutions. Also, we

use a direct algebraic method based on the generalized Liénard equation to find other

diffrent new exact solutions of the above GKdV–mKdV equation. Soliton solutions,

periodic solutions, rational functions solutions, hyperbolic functions solutions and

symmetrical hyperbolic Lucas functions solutions are obtained. Comparing our new

results obtained in this article with the well-known results are given. The generalized( G′

G , 1

G

)

-expansion method presented in this article is straightforward, concise and it

can also be applied to other nonlinear partial differential equations in mathematical

physics.

omar Ismail omar elhasadi, Khaled A. E. Alurrfi, Ayad M. Shahoot, (08-2021), Ricerche di Matematica: Università degli Studi di Napoli, 2 (2021), 1-19

Conformal Mapping as a Tool in Solving Some Mathematical and Physical Problems
Journal Article

The aim of this modest study was to shed some light on one of

the useful tools of complex analysis, which is the method of conformal

mapping (Also called conformal transformation). Conformal

transformations are optimal for solving various physical and

engineering problems that are difficult to solve in their original form

and in the given domain. This work starts by introducing the meaning

of a ''Conformal Mapping'', then introducing its basic Properties. In the

second part, it deals with a set of various examples that explain the

behavior of these mappings and show how they map a given domain

from its original form into a simpler one. Some of these examples

mentioned in this study showed that conformal transformations could

be used to determine harmonic functions, that is, to solve Laplace's

equation in two dimensions, which is the equation that governs a variety

of physical phenomena such as the steady-state temperature distribution

in solids, electrostatics and inviscid and irrotational flow (potential

flow). Other mathematical problems are treated. All problems that are

dealt with in this work became easier to solve after using this technique.

In addition, they showed that the harmonicity of a function is preserved

under conformal maps and the forms of the boundary conditions change

accordingly

omar Ismail omar elhasadi, WIAM ALI AYAD, ZAYNAB AHMED KHALLEEFAH, ABDUSSALAM ALI AHMED, (01-2021), EUROPEAN ACADEMIC RESEARCH: EUROPEAN ACADEMIC RESEARCH, 10 (8), 5972-5990

UTILIZATION ABAOUB-SHKHEAM TRANSFORM IN SOLVING LINEAR INTEGRAL EQUATIONS OF VOLTERRA
Journal Article

ABSTRACT In this work, we show the theorem of the convolution of the Abaoub-Shkheam transform and employed it for solving one dimensional linear Volterra integral equations of the second kind.  

Ali Elhrary Abaoub, Abejela Salem Shkheam, (12-2020), الهند: IJSHRE, 8 (12), 20-22

Good starting points for iteration of Newton’s function.
Journal Article

In this paper we want to describe the algorithm to find all good starting points for

iteration of 𝑁𝑝(𝑧) to find all the roots of 𝑝(𝑧) by quick and easy way. So in this paper

we have proved that all critical points go to the roots under iteration of Newton’s

function then it will be the good starting points for iteration of 𝑁𝑝(𝑧) .

omar Ismail omar elhasadi, (12-2020), Al academia journal for Basic and Applied Sciences (AJBAS): Libyan Academy, 2 (2), 1-6

البيانات واهميتها في زمن الاوبئة مدخل لدراسة جائحة كرونا في ليبيا
مقال في مؤتمر علمي

 تنبع اهمية البيانات من طبيعة الوباء من حيث؛ قوة الانتشار والعدوي وطرق انتقاله بين الافراد في المجتمع وآثاره على الفئات العمرية والافراد الذين يعانون من ضعف في جهاز المناعة، وكذلك طرق الوقاية الفعالة منه وطرق علاجه. حيث انه بدون بيانات لا يمكن معرفة العدد الإجمالي للأشخاص المصابين بهذا الوباء في اي بلد، وان كل ما يمكن معرفته هو حالة العدوى لأولئك الافراد الذين تم فعلاً الكشف الطبي عليهم واختبارهم وتسجيل بياناتهم. وعليه تعتبر البيانات الصحية التي لها علاقة مباشرة بجائحة كرونا إحدى أهم الادوات التي يمكن استعمالها في مكافحة والحد من انتشار المرض في المجتمع، حيث تسمح لنا بتحديد الأفراد المصابين، وامكانية تتبع المخالطين لهم وعزلهم والعمل علي علاجهم. وبالإضافة الي ذلك فإنها تتيح لنا قياس وتقدير بعض المعايير التي تساهم في إتباع التدابير الصحية والاجتماعية اللازمة للحد من انتشار المرض في المجتمع. وعلي الرغم من عدم توفر بيانات كافية، فأن نتائج الدراسة تشير الي إن جائحة كرونا في ليبيا لازالت في طور الانتشار والتوسع. وتوصي هذه الدراسة السلطات الليبية بتبني سياسة عامة تشمل كافة مرافق الدولة وأنشطتها وتدعمها سياسة تحفيز اقتصادي واضحة المعالم تسعي لإنعاش الاقتصاد بشكل عام وتأخذ في اعتبارها المؤشرات الاقتصادية الهامة مثل مؤشرات البطالة والتضخم، وتواكب هذه السياسة تطور جائحة كرونا في ليبيا وآثارها الاقتصادية علي الناتج المحلي الاجمالي والعمل على توفير مخزون استراتيجي لمجابهة هذه الجائحة من غذاء ودواء ومستلزمات الحماية ومستشفيات ميدانية والتدريب على الجاهزية وتسخير كافة الامكانيات المتاحة.

الكلمات المفتاحية: البيانات الصحية، جائحة كرونا، التدابير الصحية والاجتماعية، ليبيا.


علي خير صابر، (11-2020)، جامعة صبراتة: المؤتمر العلمي الدولي الافتراضي الاول حول حائجة كورونا : الواقع والمستقبل الاقتصادي والسياسي لدول حول المتوسط، 504-528

''The New Integral Transform ''Abaoub-Shkheam transform
Journal Article

Abstract-In this paper a new integral transform namely Abaoub-Shkheam transform was introduced. Fundamental properties of this transform were derived and presented such as linearity, change of scale, and first translation or shifting. It is proven and tested to covering equation for temperature distributions in a semi-infinite bar. This transform may solve some different kind of integral and differential equations and it competes with other known transforms like Sumudu and Yang Transform.

Ali E. Abaoub, Abejela S. Shkheam, (06-2020), الهند: IAETSD JOURNAL FOR ADVANCED RESEARCH IN APPLIED SCIENCES, 7 (6), 8-14

A coupling Method of Regularization and Direct Computation Method for solving Two-dimensional Fredholm Integral Equations
Journal Article

Abstract: In this paper, we will use the combination of Regularization method and Direct computation method, or shortly, Regularization-Direct method for solve two dimension- al linear Fredholm integral equations of first kind, by converting the first kind of equation to the second kind by applying the obtain a solution. A few examples are provided to prove the validity and applicability of this approach. regularization method. Then the Direct compotation method is applying to getting the resulting second kind of equation to 

Ali Abaoub, Asma Embirish, Abejela Shkheam, (03-2019), ليبيا: Journal of Faculties of Education, 13 (3), 98-107

The Adomian Decomposition Method of Volterra Integral Equation of Second Kind
Journal Article

Abstract: In this work, we consider linear and nonlinear Volterra integral equations of the second kind. Here, by converting integral equation of the first kind to a linear equation of the second kind and the ordinary differential equation to integral equation we are going to solve the equation easily. The Adomian decomposition method or shortly (ADM) is used to find a solution to these equations. The Adomian decomposition method converts the Volterra integral equations into determination of computable components. The existence and uniqueness of solutions of linear (or nonlinear) Volterra integral equations of the second kind are expressed by theorems. If an exact solution exists for the problem, then the obtained series convergence very rabidly to that solution. A nonlinear term F(u) in nonlinear volterra integral equations is Lipschitz continuous and has polynomial representation. Finally, the sufficient condition that guarantees a unique solution of Volterra (linear and nonlinear) integral equations with the choice of the initial data is obtained, and the solution is found in series form. Theoretical considerations are being discussed. To illustrate the ability and simplicity of the method. A few examples including linear and nonlinear are provided to show validity and applicability of this approach. The results are taken from the works mentioned in the reference. 

Ali Elhrary Abaoub, Abejela Salem Shkheam, Suad Mawloud Zali, (08-2018), امريكيا: American Journal of Applied Mathematics, 6 (4), 141-147